En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu LIPM logo INRAE CNRS

Laboratoire des Interactions Plantes-Microorganismes - LIPM

Laboratoire des Interactions Plantes-Microorganismes

Publications - Signalisation symbiotique

Publications

  • Maillet F, Fournier J, Mendis HC, Tadege M, Wen J, Ratet P, Mysore KS, Gough C, Jones KM. 2020. Sinorhizobium meliloti succinylated high-molecular-weight succinoglycan and the Medicago truncatula LysM receptor-like kinase MtLYK10 participate independently in symbiotic infection. Plant J. in press
  • Lefebvre B. 2020. An opportunity to breed rice for improved benefits from the arbuscular mycorrhizal symbiosis? New Phytol, 225:1404-1406
    PubMed
  • Carrère S, Verdenaud M, Gough C, Gouzy J, Gamas P. 2019. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula. Plant Cell Physiol, 16: 203-2011
    PubMed
  • Girardin A, Wang T, Ding Y, Keller J, Buendia L, Gaston M, Ribeyre C, Gasciolli V, Auriac MC, Vernié T, Bendahmane A, Ried MK, Parniske M, Vandenbussche M, Schorderet M, Reinhardt D, Delaux PM, Bono JJ and Lefebvre B. 2019. LCO receptors involved in arbuscular mycorrhiza are functional for rhizobia perception in legumes. Current Biol, 29: 4249-4259
    PubMed
  • Buendia L, Ribeyre C, Bensmihen S, Lefebvre B. 2019. Brachypodium distachyon tar2lhypo mutant shows reduced root developmental response to symbiotic signal but increased arbuscular mycorrhiza. Plant Signal Behav 14: e1651608.
    PubMed
  • Sorroche F, Walch M, Zou L, Rengel D, Maillet F, Gibelin-Viala C, Poinsot V, Chervin C, Masson-Boivin C, Gough C, Batut J, Garnerone AM. 2019. Endosymbiotic Sinorhizobium meliloti modulate Medicago root susceptibility to secondary infection via ethylene. New Phytol, 223:1505-1515.
    PubMed
  • Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, Fliegmann J, Wen J, Mysore KS, le Signor C, Jacquet C, Gough C. 2019. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. New Phytol, 223:1516-1529.
    PubMed
  • Rey T, André O, Nars A, Dumas B, Gough C, Bottin A, Jacquet C. 2019. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. New Phytol. 221: 743-749
    PubMed
  • Buendia L., Maillet F., O’Connor D., van de-Kerkhove Q., Danoun S., Gough C., Lefebvre B. and Bensmihen S. 2019. LCOs promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. New Phytol, 221: 2190-2202
    PubMed
  • Buendia L., Girardin A., Wang T., Cottret L. and Lefebvre B. 2018 LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. Front. Plant Sci. 9:1531
    PubMed
  • Buhian W.P. and Bensmihen S. 2018. Nod Factor Regulation of Phytohormone Signaling and Homeostasis During Rhizobia-Legume Symbiosis. Front. Plant Sci. 9:1247
  • PubMed
    Herrbach V., Maillet F. and Bensmihen S. 2018. Adapting the Lateral Root-Inducible System to Medicago truncatula. Methods Mol Biol. 1761:77-83
    PubMed
  • Sevin-Pujol A., Sicard M., Rosenberg C., Auriac M.C., Lepage A., Niebel A., Gough C. and Bensmihen S. 2018. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula. PLoS One. 12:e0188923
    PubMed
  • Gough C., Cottret L., Lefebvre B. and Bono JJ. 2018. Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis. Front Plant Sci. 9:923
    PubMed
  • Lefebvre B. 2017. Arbuscular mycorrhiza: A new role for N-acetylglucosamine. Nature Plants 3, 17085
    PubMed
  • Herrbach V., Chirinos X., Rengel D., Agbevenou K., Vincent R., Pateyron S., Huguet S., Balzergue S., Pasha A., Provart N., Gough C. and Bensmihen S. 2017. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula. J Exp Bot. 68:569-583
    PubMed
  • Fliegmann J., Jauneau A., Pichereaux C., Rosenberg C., Gasciolli V., Timmers A.C., Burlet-Schiltz O., Cullimore J. and Bono J.J. 2016. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor. FEBS Lett 590:1477-87
    PubMed
  •  Malkov N., Fliegmann J., Rosenberg C., Gasciolli V., Timmers A.C., Nurisso A., Cullimore J., Bono J.J. 2016. Molecular basis of lipo-chitooligosaccharide recognition by the lysin motif receptor-like kinase LYR3 in legumes. Biochem J 473:1369-78
    PubMed
  • Vernié T., Camut S., Camps C., Rembliere C., de Carvalho-Niebel F., Mbengue M., Timmers T., Gasciolli V., Thompson R., Le Signor C., Lefebvre B., Cullimore J. and Hervé C. 2016. PUB1 interacts with the receptor kinase DMI2 and negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity in Medicago truncatula. Plant Physiol, 170: 2312-2324.
    PubMed
  • Buendia L., Wang T., Girardin A.  and Lefebvre B. 2016. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytol 210, 184-195.
    PubMed
  • Camps C., Jardinaud M.F., Rengel D., Carrère S., Hervé C., Debellé F., Gamas P., Bensmihen S. and Gough C. 2015. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. New Phytol 208: 224-240.
    PubMed
  • Gonzalez A. A., Agbévénou K., Herrbach V., Gough C., Bensmihen S. Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula. 2015.Plant Signal Behav 10(1):e977741.
    PubMed
  • Gough C, Jacquet C. 2013. Nod factor perception protein carries weight in biotic interactions. Trends Plant Sci. 10: 566-74.
    PubMed
  • Herrbach V, Remblière C, Gough C, Bensmihen S. 2013. Lateral root formation and patterning in Medicago truncatula. J Plant Physiol pii: S0176-1617(13)00362-3.
    PubMed
  • Fliegmann J., Canova S., Lachaud C., Uhlenbroich S., Gasciolli V., Pichereaux C., Rossignol M., Rosenberg C., Cumener M., Pitorre D., Lefebvre B., Gough C., Samain E., Fort S., Driguez H., Vauzeilles B., Beau J.M., Nurisso A., Imberty A., Cullimore J. and Bono J.J. 2013. Lipo-chitooligosaccharidic symbiotic signals are recognized by the LysM receptor like kinase LYR3 in the legume Medicago truncatula. ACS Chemical Biology 8: 1900-1906.
    PubMed
  • Pietraszewska-Bogiel A., Lefebvre B., Koini M.A., Klaus-Heisen D., Takken F.L.W., Geurts R., Cullimore J.V and Gadella T.W.J. 2013. Interaction of Medicago truncatula Lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamianaleaf induces a defence-like response. PlosOne 8(6):e65055
    PubMed
  • Park C.J., Sharma R., Lefebvre B., Canlas P.E, and Ronald P.C. 2013. Endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. Plant Science 210:53-60
    PubMed
  • Rival P, Bono JJ, Gough C, Bensmihen S, Rosenberg C. 2013. Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in Medicago truncatula. Plant Signal Behav 6;8(2).
    PubMed
  • Rival P, de Billy F, Bono JJ, Gough C, Rosenberg C, Bensmihen S. 2012. Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development ; 139:3383-91.
    PubMed
  • Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S, Auriac MC, Gasciolli V, Nurisso A, Gadella TW, Cullimore J. 2012. Role of N-glycosylation sites and CxC motifs in trafficking of Medicago truncatula Nod Factor Perception protein to plasma membrane. J Biol Chem 287: 10812-10823.
    PubMed
  • Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore KS, Dénarié J, Schultze M, Oldroyd GE. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol. 22(23):2236-41.
    PubMed
  • Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Dénarié J, Küster H, Hohnjec N. 2012. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159(4):1671-85.
    PubMed
  • Bensmihen S, De Billy, F, Gough C. 2011. Contribution of NFP LysM domains to the recognition of Nod Factors during the Medicago truncatula/ Sinorhizobium meliloti symbiotic interaction. PLoS ONE  6(11): 11.
    PubMed
  • Debellé F, Young ND, Oldroyd GE et al. 2011.  The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 16;480(7378):520-4
    PubMed
  • Gough, C. and Cullimore, J. 2011. Lipo-chitooligosaccharide signalling in endosymbiotic plant-microbe interactions. Mol. Plant-Microbe Interact. 24(8):867-878.
    PubMed
  • Herve, C., Lefebvre, B., Cullimore, J. 2011. How many E3 ubiquitin ligases are involved in the regulation of nodulation? Plant Signal. Behav 6(5):660-664.
    PubMed
  • Fliegmann, J., Uhlenbroich, S., Shinya, T., Martinez, Y., Lefebvre, B., Shibuya, N., Bono, J.J. 2011. Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants. Plant Phys. Biochem. 49(7):709-720.
    PubMed
  • Klaus-Heisen, D., Nurisso, A., Pietraszewska-Bogiel, A., Mbengue, M., Camut, S., Timmers, T., Pichereaux, C., Rossignol, M., Gadella, T.W.J., Imberty, A., Lefebvre, B., Cullimore, J.V. 2011. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4. J Biol Chem 286: 11202-11210.
    PubMed
  • Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Andres Martinez, E., Driguez, H., Bécard, G. and J. Dénarié. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469 : 58-63
    PubMed
  • Mbengue, M., Camut, S., de Carvalho-Niebel, F., Deslandes, L., Froidure, S., Klaus-Heisen, D., Moreau, S., Rivas, S., Timmers, T., Hervé, C., Cullimore, J., Lefebvre, B. 2010. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell 22: 3474-3488.
    PubMed
  • Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Hervé, C., Tóth, K., Bittencourt-Silvestre, J., Klaus, D., Deslandes, L., Godiard, L., Murray, J.D., Udvardi, M.K., Raffaele, S., Mongrand, S., Cullimore, J., Gamas, P., Niebel, A. and Ott, T. 2010. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A. 107: 2343-2348.
    PubMed
  • Arrighi, J.F., Godfroy, O., de Billy, F., Saurat, O., Jauneau, A., Gough, C. 2008. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A. 105:9817-9822.
    PubMed
  • Lefebvre, B., Furt, F., Hartmann, M.A., Michaelson, L.V., Carde, J.P., Sargueil-Boiron, F., Rossignol, M., Napier, J.A., Cullimore, J., Bessoule, J.J., Mongrand, S. 2007. Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Phys. 144:402-418.
    PubMed
  • Hogg, B.V., Cullimore, J.V., Ranjeva, Bono, J.J. 2006. The DMI1 and DMI2 early symbiotic genes of Medicago truncatula are required for a high-affinity nodulation factor-binding site associated to a particulate fraction of roots. Plant Physiol. 140:365-73.
    PubMed
  • Mulder, L., Lefebvre, B., Cullimore, J.V., Imberty, A. 2006. LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modelling and docking of chitooligosaccharides and Nod factors. Glycobiology 16: 801-809.
    PubMed
  • Oláh, B., Brière, C., Bécard, G., Dénarié, J., Gough, C. 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J. 44:195.
    PubMed
  • Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., Ané, J.M., Lauber, E., Bisseling, T., Dénarié, J., Rosenberg, C., Debellé, F. 2004. A Putative Ca²+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses. Science 303:1361-1364.
    PubMed
  • Ané, J.M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., Lévy, J., Debellé, F., Baek, J.M., Kalo, P., Rosenberg, C., Roe, B.A., Long, S.R., Dénarié, J., Cook, D.R. 2004. MedicagotruncatulaDMI1 required for bacterial and fungal symbioses in legumes. Science. 303:1364-1367.
    PubMed
  • Catoira, R., Galera, C., de Billy, F., Penmetsa, R.V., Journet, E.P., Maillet, F., Rosenberg, C., Cook, D., Gough, C., Dénarié, J. 2000. Four genes of Medicagotruncatula controlling components of a Nod factor transduction pathway. Plant Cell 12: 1647-1666.
    PubMed
  • Wais, R. J., Galera, C., Oldroyd, G., Catoira, R., Penmetsa, R. V., Cook, D., Gough, C., Dénarié, J. and S. R. Long. 2000. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci U S A., 97: 13407-13412.
    PubMed